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ABSTRACT 

Existence of extremal solutions of sernilinear elliptic systems of operator- 

differential equations is proved. The extrernal solutions are obtained via 

monotone iterates. 

1. In troduct ion  

The object of this paper is to study the existence of minimal and maximal 

solutions of boundary value problems (BVP) for semilinear elliptic systems of 

operator-differential equations. These extremal solutions are obtained as limits 

of monotone sequences. A linear modification of the problem under considera- 

tion is given. The unique solutions of these modified problems are elements of 

sequences which are convergent in appropriate spaces. 
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We note that this method of linearization for elliptic equations was introduced 

in [2]. For related results in other areas we refer to the monograph [3]. 

2. P r e l i m i n a r y  no tes  

Let ~ C R n, n >__ 1 be a bounded domain with a boundary (9~and ~ =  

~UO~. 

We consider a boundary value problem for a semilinear elliptic system of 

operator-differential equations 

(1) L u = f u  i n ~ ,  

(2) u[on = O, 

where u = (Ul,...,um): ~ ~ R "~, m _> 1; f :  C ( ~ , R  m) --* C(~ ,Rm) .  The 

operator L is defined by Lu = (LlUl, ..., Lmum): f~ --* R TM, where: 

(Lkuk)(x) = a~j(x) 02uk(x) E a ~ ( x )  Ouk(x) 
i , j = l  OXIOX--------T + i--1 OXi ' 

k k x E f l ;  k = l , . . . , m ;  a i j = a j i  f o r i , j = l , . . . , n .  

For two vectorsa ,  b E  R m w e w r i t e  a_< b(a_>  b) if ak_< bk (ak_> bk) for 

each k, k = 1,.. . ,m. For two functions ~o,r D --* R m we write qo < r (~o > r  

on D, if qo(x) < r  (~o(x) _> r  for each point x �9 D. 

For the symmetric matrix A we write A _> 0 (A > 0), if A is positive 

semidefinite (definite). 

In the sequel we need the following simple lemma. 

( a i j ) i , j = l  ..... n >- O, (b i j ) i , j= l  ..... n >_ 0 be symmetric matrices. LEMMA 1: Let 

T h e / i ,  

~-~ aljbij > O. 
i , j=l  

Now we state the classical theorem of Schauder. 

THEOREM 1 ([5]): Let the following conditions hold: 

1. A11 the coefficients and the right-hand side of  the equation 

(3) O ,a=j + + 
i , j=l  i=1 

a(x)u(x) : f ( x ) ,  x E n ,  
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are of the class C~(f~, R), a �9 (0, 1). 

2. The m a t r i x  (aij(x) )i,j= 1 ...... is symmetric and positive definite for x �9 fl. 

3. a(x) < O, x �9 fl. 

4. O~ �9 C 2'~. 

Then, equation (3) subject to the boundary condition u[oe = 0 possesses a 

unique solution u and u E C2 '~(~ ,  R). 

We introduce the following assumptions: 

H1. There  exist functions v ~ w ~ �9 C ( ~ ,  R TM) M C2(~,  R TM) such tha t  

Lv ~ > f v  ~ i n ~ ,  v~ <_ O, 

Lw ~ <_ f w  ~ i n ~ ,  w~ _> 0, 

and v ~ < w ~  ~ .  

H2. f :  {u �9 C ( ~ ,  Rm): v ~ < u < w ~ on ~}  ~ C ( ~ ,  Rm).  

H3. (a~j(x))i,j: 1 ..... n >- O, x �9 ~, k -~ 1,. . . ,m. 

3. M a i n  resul ts  

LEMMA 2: Let the following conditions hold: 

1. Assumptions H1 - H3 are satisfied. 

2. v ,w  �9 C ( ~ , R m ) A C 2 ( ~ , R  TM) and 

(4) (Lv)(x) = ( fv~ + g(x,v(x)) ,  x �9 ~2, 

(5) v ( x )  = O, x �9 0 ~ ,  

(Lw)(x)  = ( fw~ + h(x ,w(x)) ,  x E gl, 

w ( x )  = O, x E 0 ~ .  

3. g: (-~ x R m) ~ R m, g(x, v(x)) = (gl (x ,  vi(z)) , . . . ,  g,~(x, vm(z))) is such that 

if  vk(5:) < v~ for some ~ E •, then gk(5:, va(~)) < O. 

4. h: (a x R m) ~ R TM, h(x ,w(x) )  = (hl(x,  wl(z)) ,  ...,h,~(x, wm(x))) is such 

that if w~(~) > w~ for some ~ �9 ~, the.  h~(~,w~(~)) > 0. 

Then we have 

v > v ~ w < w ~ on-~.  
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Proo~ We prove tha t  v _> v ~ on ~ .  Suppose tha t  this conclusion is not true,  

tha t  is, vk(x) < v~ for some x �9 ~ and k �9 {1 , . . . ,m}.  

Let  y �9 ~ be such tha t  

v k ( y )  - ~o(y)  = m i n ( ~ ( x )  - ~~  
xE ~  

From (5) and the definition of v ~ it follows tha t  y �9 ~ and therefore 

o ( ~  - ~o1 
b ~  i~=y = 0, i = l , . . . , n ,  

( ~176 ) ~ o . 

OXiOXj  x=y i , j= l  ..... n 

From L e m m a  1 it follows tha t  

(6) (Lkvk)(y) >_ (Lkv~ 

From (4), (6) and the definition of v ~ it follows tha t  gk(y, vk(y)) >_ O, which is 

a contradic t ion since vk(y) < v~ Therefore,  v _> v ~ on ~ .  

Analogously, we can prove t ha t  w _< w ~ on ~ .  | 

LEMMA 3: Let  the following conditions hold: 

1. Assumptions H2, H3 are satisfied. 

2. There exist functions ~l �9 C(~,  R m) , ~ �9 C(~,  R m) n C2(~ ,  Rm),  l = 1, 2 

such that v ~ <_ ~1<_ ~2 <_ w o on-~, 

(L~?~)(x) = ( f (~) (x)+q(x , ( ' (x ) ,71t (x) ) ,  x �9 gt, l = 1,2, 

~?~(x)=0,  x � 9  I = 1 , 2 .  

3. q: ( ~ x R m • R m) ~ R m , 

q ( X , ~ ( X ) , ~ ( X ) )  = ( q l ( X , ~ I ( X ) , ~ I ( X ) ) , . . . , q m ( X , ~ m ( X ) , ~ m ( X ) ) )  

is such that if 

3 z,-r l �9 v ~  ~ one, 

311o~ < 0 < 3210~, ~11o~ = 721o~ = O, ~1(~) > ~ ( ~ )  
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for some fc 6 f~, then 

1 ~ ,  1 ~ (f/~2)k(~:) __ ( f /~ l )k (~ )  < q k ( ~ , ~ k (  ) , .~k(X))  __ qk(~,]~2(:~) ,~[k(X))  ~ 

Then, we have that 

Proof of Lemma 3: 

here. 

~]1 < ~2 on  -~. 

The proof is analogous to that of Lemma 2. We omit it 

We introduce the following assumptions: 

H4. There exist functions 

that 

and v ~ < w ~  ~. 

L v  ~ 

Lw o 

v ~ w ~ E C~(~, R m) M C2(f/, Rm), a E (0, 1), such 

> f v  ~ i n ~ ,  v~ 

<_ f w  ~ in f / ,  w~ >_ O 

i D 

H5. If u 6 C~(~,Rm) ,  then f u  6 C ~ ( ~ , R m ) , a  6 (0,1). 

THEOREM 2: Let the following conditions hold: 

1. Assumptions H4, H5 are satisfied. 

2. a~j(x), x E ~ satisfy the Lipschitz condition, i , j  = 1,. . . ,n; k : 1, . . . ,m; 

aik 6 C~(-~,Rm), i : 1,. . . ,n; k : 1,. . . ,m; a 6 (0,1) and the matrices 

(a~j(x))ij=l ...... are positive definite for x 6 ~,  k : 1, ..., m. 

3. The operator f maps {u 6 L2(~,Rm): v ~ <_ u < w ~ on-~} into 

L2(~, R m) uniformly, continuously and the restriction of f maps W2(~, R m) 

into W22(~2, R m) continuously. 

4. For each /~1,~2 6 C ~ ( ~ , R  m) such that v ~ <_13 1<_ /3 2 <_ w ~ on -~, the 

following inequality is valid: 

(7) f ~ 2  __ f ~ l  <~ M(j32 __/~1), 

where M > 0 is a constant. 

5. The constant M does not belong to the spectrum of the operator L with the 

boundary condition (2). 

6. Of~ 6 C2'% 

Then, there exist monotone sequences {vs}, {w 8} which converge point-wise 

and in W22(~,R m) to coo and w ~ respectively. Moreover, v~176 6 

C2,~(-~, R m) and they are minimal and maxima/solutions of the B V P  (1), (2) in 
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the  [ol lowing sense: i f  u E C ( ~ ,  R m) N C2(~,  R m)  is a so lu t ion  o f  the  B V P  (1), 

(2) and  v ~  ~  ~ , t h e n  

V c~ < ~ < W c~ o n  ~ .  

We define the sequences (v ~ } and (w" } as follows: 

{ v ` + l -  M v  s+l = f v  ` - M v  ~ in l2 ,  

v s+ l lo n  = 0 

P r o o f  

(s) 

and 

(9) 

s = O ,  1, . . . .  

{ L w  *+l - M w  ,+l  = . f w  * - M w  ~ in~2, 

w~+llOa = O, 

By Theorem 1 it follows that ,  for s = 0, B V P ' s  (8) and (9) possess unique 

solutions v I and w 1 respectively, and v l , w  1 E C2 '~ (~ ,Rm) .  Moreover, by 

Lemmas  2 and 3 it follows tha t  

v ~ < v 1 < w 1 < w ~ o n ~ .  

Analogously, for s = 1 we get v 2, w 2 E C2'~(~,  R TM) and 

V 1 < V 2 < W 2 < W 1 o n  ~.  

Thus  we obtain  two sequences 

v ~ < v 1 < v 2 < . . .  on 

and 

W 0 > W 1 > W 2 > ' ' '  o n  

such tha t  v ~ <__ w" on ~ f o r e a c h  s , r = 0 , 1 , 2 , . . . .  

Let L M = L - M .  For each sl,  s2 _> 1, (8) gives us 

(10) L M ( v  ~ - v ~2) = ( f v  ~1-1 - f v  ~ - 1 )  - M ( v  ~ ' -1  - v ~2-1) in Ft. 

We have tha t  

IJv - vS211L2(a ,R . ,  ) - - ,  0 as s l , s 2  - - ,  c r  
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and 

I[(fv ~'-1 - f v  ~2-1) - M ( v  sl-1 - vS~-l)llL~(~,n.~) --* 0 as Sl,S2 ~ oo. 

Therefore, by the second basic inequality in the theory of the linear elliptic equa- 

tions (Lemma 8.1, Chapter 3, [4]) it follows that 

IIv as81,82--'+00. 

Thus, the sequence {v'} is convergent in W22(f/, Rm). Passing to limit as s ~ oc 

in (8), we get that  voo is a weak solution of the BVP 

(11) LMv  ~176 = f v  ~176 - Mvoo in 12, 

o o  (12) v Ion = 0, 

in the class W2(~, Rm). Hence, it follows that voo e C1'~(~, R "~) for some 

> 0 (see Theorem 15.1, Chapter 3, [4]). Therefore, the right-hand side of (11) is 

of the class C a ( ~ ,  Rm) .  The BVP (11), (12) has a unique solution by condition 

5 of our theorem. Consequently, voo E C2'~(~, R m) is a classical solution of the 

BVP (1), (2) by Theorem 1. 

Analogously, we prove that w ~ E C2'~(~, R m) is a classical solution of the 

BVP (1), (2). 

Now we prove that if u E C(~,  R TM) N C2( ~, Rm) is a solution of the BVP 

(1), (2) such that v ~ _< u _< w ~ on ~, then voo _< u _< woo on ~. If we 

suppose that  v 8 _< u_< w 8 on ~ for some s ,  s - -  0,1,..., then it follows 

that  v ~+1 _< u _< w s+x on ~. Therefore, our conclusion holds by inductive 

arguments. | 

Remark 1: From the proof of Theorem 2 and from Theorem 15.1, Chapter 3 of 

[4] it follows that  if the conditions of Theorem 2 hold, then each weak solution 

of the BVP (1), (2) in the class WI(~,  R m) belongs to the class C2'~(~, R m) 

and it is a classical solution of the BVP (1), (2). | 

Remark 2: 

is valid if 

From Chapter 3, w of [4], it follows that condition 5 of Theorem 2 

Oa~r 
j=l O x - - - ~ '  i = 1,.. . ,n; k = 1,... ,m; 

or M is sufficiently large, or mes ~ is sufficiently small. 

estimates can be obtained from [4]. | 

x E ~ ,  

The corresponding 
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Remark 3: If the operator f is reduced to a function, that  is, (fu)(x) = 
F(x, u(x)), then the assumption H5 and condition 3 of Theorem 2 are reduced 

to the following: the function 

F : ( D = { ( x , z ) : x � 9  v~176  x � 9  m 

has derivatives of first order which satisfy the Lipschitz condition on D. | 

Example: We consider the BVP for the nonlinear stationary SchrSdinger 

equation 

(13) A r 1 6 2  2 ) r  in ~, 

(14) r = 0, 

where r ~ --* C, qo: [0, +cx~) --. (-oo,  0], the function ~o is nonincreasing 

and its derivative satisfies the local Lipschitz condition. Separating the real and 

imaginary parts of the BVP (13), (14), we obtain the two-dimensional system 

A u  = ~ (lul 2) u in f~, 

u]o~ = 0. 

Let v~ 0 on ~ and let wOE C'~(~,R2)NC2(f~,R2 ) satisfy the inequalities 

Aw ~ _< ~o([w~ 2) w ~ ins 

w~ _> 0. 

Then all the conditions of Theorem 2 are fulfilled, where M is an arbitrary 

positive number. Thus, we obtain a monotone sequence which converges to the 

solution of the BVP (13), (14). | 
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